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The solution of the planar problem of heat conduction and thermoelasticity in the case of a plate with a
periodic system of straight thin elastic inclusions of finite length is constructed using the methods of the
theory of functions of a complex variable. Integral representations are obtained for the complex
temperature and stress-strain state potentials, the system of integro-differential resolvents of the
problem is constructed and expressions are presented for the stress intensity factors at the vertices of
the inclusions. A numerical analysis of the solution of the problem is carried out using the method of
mechanical quadratures.

1. FORMULATION OF THE PROBLEM

An isotropic plate (matrix) containing a system of straight thin-walled elastic inclusions of
length 2/ and thickness 24 is considered. The matrix is under the action of a thermal flux at
infinity of intensity ¢... It is assumed that the lateral edges of the plate are thermally insulated
and that there is ideal force and thermal contact on the lines of separation of the materials. It is
required to determine the effect of the inclusions on the magnitude and character of the
temperature-field distribution and to investigate the thermoelastic state in the composite under
consideration.

We introduce the system of coordinates x,0,y, (Fig. 1) with the x, axis passing through the
centres of the inclusions and, also, a local system of coordinates xy, the axes of which are
directed along the axes of symmetry of an inclusion. Let o be the angle of inclination of an
inclusion to the x, axis and d be the distance between the centres of the inclusions. Quantities,
referring to inclusions, are denoted by a zero subscript. Since all the inclusions are under
identical conditions, the boundary conditions are written for just a single inclusion.

The conditions of mechanical and thermophysical contact of an inclusion with the surround-
ing material have the form

(0, -ity)* =(0, —it,), % (u+iv)g +igg = % (u+iv)* (1.1)

d

(T+inE =@+, k= (T+img =k (T +in)* (12)
dy dy
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Fig. 1.

The boundary values of functions at the upper edge (y=-+h) and the lower edge (y=-h) of
an inclusion are denoted by plus and minus signs n(x, y) is an auxiliary harmonic function and
k, and k are the thermal conductivities of the material of the inclusion and the plate
respectively.

2. THE HEAT-CONDUCTION PROBLEM

We know [1] that the temperature field in a homogeneous isotropic plate can be defined by
the relationships

F(@+Q(2)=T+in, F(z)+Q(z)=T+in)/ox
F(2)-Q(z)=-id(T+in)/dy, F(z)=F(2), A2)=0Q(2) (2.1)

where F,(z) and Q,(z) are the functions that are piecewise holomorphic in the complex plane.

Taking account of the thin-walled nature of an inclusion, we model it with a line provided
with specific thermophysical properties. For this purpose, we expand the complex potentials
Fy(z) and Qy(2) in series in the parameter h. Neglecting quantities of a higher order of
smallness compared with 4, from (2.1) we find

. a . , d : d e .
x€eL, %(Tﬂn){; —-é-;(Tﬂn)o =2hp’(x), $(T+m);; —5;(T+m)o =-2hg’(x)
) ) 2 2 (22)
g(ﬂin)& +5;(T+in)6 =2g(x), a—(T +in)y —5y—(T+in)6 =2p(x)

where g(x) and p(x) are functions which have to be determined and L=[-/, /] is a segment of
the real axis.

Piecewise holomorphic functions F(z) and Q(z) are introduced in the case of the matrix.
Here, the boundary conditions from the edges of an inclusion are brought together on the real
axis Ox. On satisfying conditions (1.1) using relationships (2.1) and taking account of the
relation (2.2), we obtain the following boundary conditions

x € L,[F(x)+Q(x)]" = [F(x)+ Q(x)I" =2ihkyg’(x),
[F(x)-Q(O]" - [F(x)-Q(x)]" =2hp’(x) (23)

x €L, [F(x)+ Q0T +[F(x)+Q(x)I” =2g(x),
[F(x)—Q(x)]* +[F(x)- Q(x)]” = - 2ikp(x) (24)
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where k, =k,/k.
On solving the linear coupling problems (2.3), we find

F(z)= 7’3 i ctg(g (tei“ -z )) kg’ () —ip’())dt+c

] .
oz)=2 ] ctzz(E (te'® - )) kg’ (D +ip’ (D] dt+c (2.5)
2d 5 \d

=—q.e k)", z = x +iy
where ¢ is the angle between the Ox axis and the principal direction of the thermal flux at
infinity of intensity q...

If, now, we satisfy conditions (2.4), taking account of (2.5), we obtain a system of integro-
differential equations for determining the unknown functions g(x) and p(x)

!
xel, g(x)- % jl g’ () K(@-x)+p'(t) L(t-x)] dt =- aq,,k" cos(oL ~ @) (2.6)

kp(x)+ -:‘; _f, [kyg’(t) L(t - x)~p’(t) K(t ~ x)) dt = bg k' sin(ct - )
Here
a=1-§ b=1-k§€=min(l k™), K(x)+iL(x) = Qctg(Qx), O = me*d™"
To Eqs (2.6), it is necessary to add the relationships
fl g'(ydt=0, j{ p(ydt=0 (2.7)
which are the conditions for the temperature and the heat balance to be unique on passing

around the contour of an inclusion.
We shall seek a solution of the system of equations (2.6) and (2.7) in the form

g (xX)=Z(x)/V1-x%, p’(x)=Y(x)/V1-x (2.8)

Using the method of mechanical quadratures [2], we arrive at the system of linear algebraic
equations for finding the value of the unknown functions Z(x) and Y(x) at the nodal points

f:; {rZ(t,,) A(m,r) - Rl Z(1,,) K(I(t,, - x,))+ Y (8,,) L(I(2,, — x,))]} = — Mag. k™" cos(o.— @)

f_l {mk,Y(t,,) A(m,r)+ hlk Z(t,,) L((t,, - x,)) - Y(2,,) K((2,, - x,))]} =
= Mbgq..k~ sin(o. - @) 29

Here

M-1
A(m,r)=—% 3 %T;C(tm)Uk_,(x,)\ll—x,z

k=1
2m-1

nr
t, =cCO0s T, m=12,.. M, x,=cosﬁ, r=1,2,....M-1
sin(narcsinx)

Upr(6)= .

T, (x) = cos(narccosx)
1-x
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Having a solution of the system of algebraic equations (2.9), it is possible to construct an
interpolating Lagrange polynomial for the functions Y(x) and Z(x) {3] using the Chebyshev
nodal points

Y=L 3L, 2= T 5T 210)

(}’r-—;‘; 2 Y(,) T.(t,), z,——~ Z 2(t,) .1, )}

By substituting the expressions for the functions g'(x) and p’(x) (2.8) into (2.5) and taking
account of (2.10), the complex potentials F(z,) and Q(z,) can be represented in the form

F(z)= B): 3 (kz, -iv,) L (v)+c

1 kz—oe
et 211
0e)=B'S E thz, +iy) Lop+e @1)

Here . ’ |
B= he“‘la /(21‘1)’ Vv = (zl __ndk) e-—‘lﬂl—l’ u, = eZzak,uk

L(2)=1U, (V22 -1 =TI V2 -1

Note that, if one puts ., =0 in (2.11), we obtain the solution of the heat-conduction problem
for a plate with a periodic system of thermally insulated cracks [S). If, however, one puts k, =k,
we obtain the solution of the heat-conduction problem for a plate without inclusions,

3. THERMOELASTICITY PROBLEMS

The thermoelastic state of an isotropic plate can be described using the complex potentials
®(z) and ¥(2), starting out from the formulae [1]

6,+0, =2[0(2)+ D)}, O, ity =B(2)+RE) (31)
2u % (#+iv) = x®(z) - R(z)+ HY, (2)
Here
¥()=3 [IF@+ D) dz
R(z)=B@)+2® () +F@), 0()=0Q)

x=3-4v, H =20F in the case of plane strain x=3-v)/(1+v), H=2aE/(1+V) for the plane
stressed state o is the temperature coefficient of linear expansion, v is Poisson’s ratio, E is
Young’s modulus and p is the Lamé coefficient.

Taking account of the thin-walled nature of an inclusion, let us expand the complex poten-
tials ®,(z), ¥,(z) and ¥,;(z) in relationships (3.1) in a Taylor series in the neighbourhood of a
point x on the real axis.

On retaining terms of an order not higher than 4 in the final expansions, we obtain the
relations

xeL, (o, it )y — (0, —ity)s = 2ihK'(x)

2 (u+iv)g - 2 (u+iv)y = ih[M’(x)+ HyWg(x)]/ 1o
ox ox

(0, i) +(6, —iT,)5 = 2Yol(1- Ko) K(x)+ 2M(x)+2K(x) + 2M(x)] (G2
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53— (u+iv)g +% (u+iv)5 = g yol2KoK(x) + (g — 1) M(x) = 2K(x) - 2M(x)] + Hy¥o (x) / 1o
29

Here
Yo(x)= —To -86x+— {(z,—-lyl [ i;— — x? +larcsin []+
| (x) : (x)
—(z. — - —_— 2i_—ylz
+,>_:2 pCRLANTRE [r U277 v

Yo =(1+%g), ¢ =ce'®

where T, is the temperature of the inclusion and K (x) and M(x) are unknown functions.
Relations (3.2) provide a model of a thin inclusion for the planar problem of thermo-
elasticity.
Making use of the conditions of ideal mechanical contact (1.1) and, also, relations (3.2) and
(3.1) for determining the complex potentials ®(z) and ¥(z), we shall have the following
boundary-value problems

x € L, [®(x)+ R(x)]* —[®(x)+ R(x)]” =2ihK’(x)
[x®(x) - R(x)+ H¥ (x)]* - [x®(x) - R(x)+ H¥)(0)]" =
=2ihBy[M’(x) - M; (x)+ Hy'¥§(x)] (33)
[®(x)+ R(x)]* +[®(x)+ R = 270[(1- %) K(x)+2K(x) + 2M(x) + 2M(x)]
[xD(x)— R(x)+ H¥;(x)]* +[x®(x) - R(x)+ HY¥,(x)]” =
= 2By Yo 2K K(x)+ (g — 1) M(x) - 2K(x) - 2M(x)] + 2By HoWy (x) - 2ig, (3.4)
Here

€ = -2Hgy, M) =oHE, Bo=u/uo. @, = min(1,B5')

h M 1 L k * lr
\PI(ZI) G + — 1 T +‘Fl (Zl) =y + T + - Z Z ( 1y — ly,)
2 2 1ol k=-o (Z+ 12 )r

Z= e_i“(zl ~ndk)

and T, is the value of the temperature at infinity.
We satisfy conditions (3.3), if the complex potentials are represented in the form

1l
D(z) =7, II (K3 (1) +BoMG ()] ctgl P(t,2))] dt - ¥3¥, (2)

] ,
¥(z)=1, Il{ [BoMg (1)1 - kK5 (1)) ctgl P(t,z;)) ™ — (3.5)
—{rd ' [5,d® + 1(1 - €'*)] cosec? [ P(t, 2, )] + €™ ctg[ P(t,2))]} X
. !
X [K§(£)+BoM(£)]} dt - y3he™*(2d)™" [ {[kygo (1) +
-1

+ipo (1) — €2 (ko (1) — ipo ()] ctgL P2, 2,)] ~ [kygo (£) -

—ipg ()] (fe™™® —1e® + z) nd~'e*'® cosec? [ P(t, 7)1} dt

Y=[n(l+ K)]‘l Ko(x)=K(x), My(x)=M'(x)- Ml'(x)'+ H ¥ (x),
Y, =yRd'e"®, y;=nyH, P(t,g)=nd"(te'* —z)
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Qn substituting the expressions for the functions ®(z) and ¥(z) into relationships (3.4), we
arrive at a system of integro-differential equations in the unknown functions K,(x) and M,(x)

Here

xeL, Yol(1-%o) Ko(x)+2My(x)+ 2K, (x) + 2 My (%)) -

]
- I! {[Kg(e)+BoMo ()] 8(t — x)+ [-x Ko (1) + Bo My (1)) g(t — x) +

KD +Bo M3 (D GGz - 1)) de = Ax)
BoYo[ZKoKo (x) + (KO - 1) Mo(x) - 2K0(.x) - 2M0(x)] +

l ———
+¢y II {(~x[K§ () +BoMy ()] g(r — x) + [-x[Kp (£) + BoMy (1)]g(t - x)+

+HEK (D) +Bo My (D] G(t - x)} dt = B(x) +igg

a=hy, A=d/l, g=- iAe ®sino, g(x) = Qctg(Qx)
G(x)=nd ' (e7'® — €% ) [ctg(Qx) - Qxcosec’ (Qx)]

A(x) = - 470 RC[HO)O(-;— 72) + Ex] - H\Fo(.x)} - C(x)
B(x)= -ﬂoYo{(Ko -1 {ng(% T +Ex)— Ht)‘{‘o()f)]+
+2[H0 Y- Hmo(-% T, + Ex)]}-ﬁ- Clx)+ H(% T, +Ex)-— BoHoW, (%)

M-1 X X
C{x)=cHr ¥, {(k,z, —iy,) Re[i’,(-—l-)]+ (kiz, +iy,) S’(-l—)}
r=1

P,<x)=1{1;(x)+ 5 [ L — +}}
r k=1| (x+Ake '® + R*e'® )

S,(0=q% k[ e® -}

k=1 | R*(x+Ake'™ + Rtee'y

RE = {[(AF - 1)? + 821 [(AF +1)2 + 3%/
- + - - + -
20t = 2n-y -y*, A +1<0’ 26 = 4n-B--p*, A -1>0
T-y +Y", A +1>0 3n+p -P*, A -1<0

d
ﬁi=arctgrz;—;1—|, y* = arctg A':‘:l{

A* = x+tAkcosa, &=Aksina
A = xtAkcosa, &=Aksina

(3.6)

(the dots in the square brackets, as previously, denote a term in which the plus superscript has
been replaced by a minus). The following relationships

! i !
| Kg(®)dr=0, [ My()dt=0, Im [ tKi(t)dt=0
-1 ~1 -
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which are the conditions for the equilibrium of an inclusion and the conditions for the
uniqueness of the displacements on passing around the contour of the inclusion, have to be
added to the system of equations (3.6).

Having passed to the corresponding limit in (3.6), we obtain the singular integral equations
for a plate with a periodic system of cracks [5] and inelastic inclusions.

PP £ conn atenoa toatna naishhanehand Af tha

The aby‘luptuuc form of the stress—strain state in the neignoourndoa o1 tnC v
inclusion have been given in [4] and the stress intensity factors (SIF) are determined using the
formulae

Ki-iKi=7F A_Bo lim V2~ x* Mj(x)

Ki—iKf=FA lim w/lz—x Ki(x) (A=2hn/(I(1+x))

x—i

of the system of equations (3.6) in the form

>y N AV

K(lx)= u(x)/\/l x2, My(lx)= n(x)/\h x?

Here, u(x) and v(x) are unknown functions, the values of which at the nodal points are
determined from the system of linear algebraic equations obtained by the method of
mechanical quadratures [2}].

4. NUMERICAL ANALYSIS

dlfferent geomemca and thermophyswal parameters of the proble ere ca rrled for the case when a
constant temperature 7, is maintained in a plate with a periodic system of thin lmear inclusions. The
results are shown in Figs 2-4.

Graphs of the dimensionless SIF K;=K,/(HT,VI) (i=1, 3) as a function of the relative stiffness of a
thin inclusion for various values of the parameter a* =0, /0 and the dimensionless distance between the
centres of neighbouring inclusions d// are shown in Figs 2 and 3. The results for K are represented by the
solid lines while those for 1\1 arc represemw Uy' the dashed lines. Note t luat, in the case under consider-
ation, stresses and displacements in the composite occur not on account of the perturbation of the
temperature field but as a result of the differences in the coefficients of linear thermal expansion of the
materials of the matrix and the inclusions. Under such conditions K; =K =

Curves 1,4 and 7 in Fig. 2 are drawn for a value of the parameter a* =0, curves 2, 5 and 8 for a*=0.1
and curves 3, 6 and 9 for a*=0.5. Lines 1-3 correspond to a relative distance between inclusions d//=25
(actually, we have the case of a single inclusion in an unbounded plate and these results are identical to

A1 7.5 ¢

those presenlea in {4])- Lines 4-0 are drawn for d/i{=3.0 and lines 7-9 for 4/i{=2.5.
Results for a* =1 are shown in Fig. 3. The even curves are drawn for a value o* =2 and the odd curves

for o* =3 Note that, when a*=1 all of the SIF are equal to zero, that is, there is no perturbation of the

QIC 12148, Qi QL AT LT &l CLhtal 10 4010, Al L, URIC a0 peiud L0 LU0} N B 4 Lin

[

stressed state in the neighbourhood of the vertices of the inclusions. Graphs 1 and 2 are dra
d/1=25, graphs 3 and 4 for d//=3.0 and graphs 5 and 6 for d//=2.5.

The nature of the change in the generalized SIF K] as a function of the angle of orientation of an
inclusion is shown by the solid curves in Fig. 4 for a*=0, and by the dashed curves for o*=0.5. Note
that, when o* =2, the required relations are obtained from the solid curves in Fig. 4 by a symmetric
reflection in the abscissa axis. Here, the following notation for the curves has been introduced. Curve 1

renracantce the hoahaviaur aof K’ far an ahaeolute riaid inclugian Curvac 2 and 2 racnactivaly osive tha
IEprescenis e OCenavicur 61 &5 IO an AvsOiule riglid MCiusion. LUrves 2 and 5, respeclively, give the

values of Kj, Kj for an elastic inclusion with a relative stiffness p,/p=10 and curve 4 represents the
nature of the change in K7 for an inclusion with a relative stiffness of 0.1. Note that, in the case under
consideration, the remaining quantities are small compared with those which have been presented and are
therefore not shown in the figures.

or
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